The Strong Oka’s Lemma, Bounded Plurisubharmonic Functions and the ∂̄-neumann Problem

نویسندگان

  • Phillip S. Harrington
  • Mei-Chi Shaw
چکیده

The classical Oka’s Lemma states that if Ω is a pseudoconvex domain in C, n ≥ 2, then − log δ is plurisubharmonic where δ is some distance function to the boundary. Let M be a complex hermitian manifold with the metric form ω. Let Ω be relatively compact pseudoconvex domain in M . We say that a distance function δ to the boundary bΩ satisfies the strong Oka condition if it can be extended from a neighborhood of bΩ to Ω such that δ satisfies

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ∂̄-neumann Operator on Lipschitz Pseudoconvex Domains with Plurisubharmonic Defining Functions

On a bounded pseudoconvex domain in C with a plurisubharmonic Lipschitz defining function, we prove that the ∂̄-Neumann operator is bounded on Sobolev (1/2)-spaces. 0. Introduction LetD be a bounded pseudoconvex domain in C with the standard Hermitian metric. The ∂̄-Neumann operator N for (p, q)-forms is the inverse of the complex Laplacian = ∂̄ ∂̄∗ + ∂̄∗∂̄ , where ∂̄ is the maximal extension of the C...

متن کامل

Global Regularity for the ∂–Neumann Operator and Bounded Plurisubharmonic Exhaustion Functions

For a smooth, bounded, pseudoconvex domain Ω ⊂ C n , we derive a new sufficient condition for global regularity of the ¯ ∂-Neumann operator that generalizes McNeal's Property (˜ P), the approximately holomorphic vector fields of Boas and Straube, and a condition involving bounded plurisub-harmonic exhaustion functions due to Kohn.

متن کامل

Some Remarks on Approximation of Plurisubharmonic Functions

Let Ω be a domain in Cn. An upper semicontinuous function u : Ω → [−∞,∞) is said to be plurisubharmonic if the restriction of u to each complex line is subharmonic (we allow the function identically −∞ to be plurisubharmonic). We say that u is strictly plurisubharmonic if for every z0 ∈ Ω there is a neigbourhood U of z0 and λ > 0 such that u(z) − λ|z|2 is plurisubharmonic on U . We write PSH(Ω)...

متن کامل

Plurisubharmonic functions in calibrated geometry and q-convexity

Let (M,ω) be a Kähler manifold. An integrable function φ on M is called ω-plurisubharmonic if the current ddφ ∧ ω is positive. We prove that φ is ωplurisubharmonic if and only if φ is subharmonic on all q-dimensional complex subvarieties. We prove that a ωplurisubharmonic function is q-convex, and admits a local approximation by smooth, ω-plurisubharmonic functions. For any closed subvariety Z ...

متن کامل

Strong Topological Regularity and Weak Regularity of Banach Algebras

In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006